The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons.

نویسندگان

  • W Shreffler
  • T Magardino
  • K Shekdar
  • E Wolinsky
چکیده

Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans.

Genetic studies of sup-9, unc-93, and sup-10 strongly suggest that these genes encode components of a multi-subunit protein complex that coordinates muscle contraction in Caenorhabditis elegans. We cloned sup-9 and sup-10 and found that they encode a two-pore K+ channel and a novel transmembrane protein, respectively. We also found that UNC-93 and SUP-10 colocalize with SUP-9 within muscle cell...

متن کامل

Cellular/Molecular sup-9, sup-10, and unc-93 May Encode Components of a Two-Pore K Channel that Coordinates Muscle Contraction in Caenorhabditis elegans

Genetic studies of sup-9, unc-93, and sup-10 strongly suggest that these genes encode components of a multi-subunit protein complex that coordinates muscle contraction in Caenorhabditis elegans. We cloned sup-9 and sup-10 and found that they encode a two-pore K channel and a novel transmembrane protein, respectively. We also found that UNC-93 and SUP-10 colocalize with SUP-9 within muscle cells...

متن کامل

The Caenorhabditis elegans Iodotyrosine Deiodinase Ortholog SUP-18 Functions through a Conserved Channel SC-Box to Regulate the Muscle Two-Pore Domain Potassium Channel SUP-9

Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K(+) channel associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase (IYD), an NADH oxida...

متن کامل

A Putative Cation Channel, NCA-1, and a Novel Protein, UNC-80, Transmit Neuronal Activity in C. elegans

Voltage-gated cation channels regulate neuronal excitability through selective ion flux. NALCN, a member of a protein family that is structurally related to the alpha1 subunits of voltage-gated sodium/calcium channels, was recently shown to regulate the resting membrane potentials by mediating sodium leak and the firing of mouse neurons. We identified a role for the Caenorhabditis elegans NALCN...

متن کامل

A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans.

The mechanism of action of volatile anesthetics is unknown. In Caenorhabditis elegans, mutations in the gene unc-1 alter anesthetic sensitivity. The protein UNC-1 is a close homologue of the mammalian protein stomatin. Mammalian stomatin is thought to interact with an as-yet-unknown ion channel to control sodium flux. Using both reporter constructs and translational fusion constructs for UNC-1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 139 3  شماره 

صفحات  -

تاریخ انتشار 1995